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Abstract 

A systematic analysis is presented of the algorithm for converting a virtual-bond 
chain, defined by the coordinates of the a-carbons of a given protein, into a complete 
polypeptide backbone. An alternative algorithm, based upon the same set of geometric 
parameters used in the Puris ima-  Scheraga algorithm [1 ] but with a different "linkage 
map" of the algorithmic procedures, is proposed. The global vktual-bond chain geometric 
constraints are more easily separable from the loal peptide geometric and energetic 
constraints derived from, for example, the Ramachandran criterion [2, 3], within the 
framework of this approach. 

1. In t roduct ion  

The problem of protein folding, i.e. the prediction of the three-dimensional 
structure of a protein from its primary sequence of amino acids, remains one of the 
most difficult problems in biophysical chemistry. The origin of the difficulty lies 
in the fact that protein folding is a typical "tiP (Nondeterministic Polynomial)- 
complete" problem [4]. In other words, the complexity of the problem increases 
exponentially with the number of sites in the problem. For a polypeptide sequence 
of 100 residues, each with ten possible configurations, there are - 101°° configurations 
to be examined and tested when searching for a stable folded structure. There are 
basically two ways to tackle an NP-complete problem. One is to reduce the complexity 
into a "P-complete" problem by constructing some models with less heterogeneity 
in them [5, 6]. However, since structural heterogeneity is essential for the biological 
specificity of an enzymatic protein, any attempt to reduce its complexity to a "P- 
complete" degree by a homogeneous modeling will inevitably lose most of its 
essential features. The other approach to the NP-complete problem is to seek aid 
from empirical data so that the growth in complexity, although still NP-complete, 
is under the control of the investigator. For example, one of the approaches to the 
static structure of a folded protein is the so-called virtual-bond method [7], in which 
a complete polypeptide backbone chain is represented by a given set of C~ coordinates 
(i is the residue number) and the "virtual bonds" connecting them. 

To compare the results of the theoretical modeling by the virtual-bond method 
with experimental data, one needs to find all the backbone conformations compatible 
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with a given virtual chain. Purisima and Scheraga designed an algorithm in 1984 [1] 
to convert a virtual-bond chain into a complete main chain based on the following 
assumptions: 

(i) all bond lengths and bond angles are fixed; and 

(ii) all peptide bonds are in the "trans" conformation, i.e. co,. = 180 ° Vi. 

The Purisima-Scheraga algorithm (PS algorithm) has been tested by the 
Scheraga group [1] and in this laboratory (see, e.g. [8,9]) on various proteins. 

In addition, algorithms for generating full backbone conformations from a 
given set of Cff coordinates are also very useful in studying a protein's structure 
when only its Cff coordinates are available from X-ray crystallography. 

In this article, a systematic analysis of the algorithms for generating polypeptide 
main chain conformations under the given geometric constraints of the virtual chain 
is carried out. An alternative to the PS algorithm that is based on the same set of 
the assumptions and geometric parameters has emerged. The geometric set-up and 
the notational definitions of the problem are briefly reviewed in section 2. In 
section 3, the "linkage maps", i.e. the computational procedural relations among the 
variables, for the PS algorithm are presented. In section 4, the new algorithm is 
constructed, based on an analysis of the role played by the auxiliary parameters (A1) / 
and (22) / introduced in the PS algorithm. Finally, the similarities and the differences 
between the two algorithms and the possible advantages of the new algorithm are 
summarized in section 5. 

2. Geometry and notations of the vir tual-bond method 

Following the standard convention [10], ECEPP geometry [1 1] and notations 
of Purisima and Scheraga [1], the geometric parameters involving the virtual-bond 
chain and the polypeptide main chain are (see fig. 1 [12]): 

t 2  i = 

r/i = 
( ,=  

Z = 

$i = 

V/ = 
( ; t l ) /  

bond angle formed by N i C~ Ci'(from ECEPP geometry), 

angle formed by N i C~ Ca,-1 (from ECEPP geometry), 

angle formed by C i'Cia Ca,+ 1 (from ECEPP geometry), 

virtual-bond angle formed by C~ r-aC a - l ~ " i  i + 1 ,  

virtual dihedral angle formed by C'~_ 1C~ C9,+1Cai+2 (fig. 2), 
l a t dihedral angle formed by Ci_ 1Ni Ci Ci, 

dihedral angle formed by N i C~ C'Ni+ l, 

and (22)i = auxiliary dihedral angles that define the orientation of the two 
planar peptide groups adjacent to C~ with respect to the plane defined by the 
virtual-bond angle C~_ 1C/a C~+ 1. 
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Fig. 1. The definitions of the angular para- 
meters a, ~, ~, r/, ~0, N, ~q and ;t.2 (see ref. [12]). 

i- 1 C i+2 

Fig. 2. The definitions of the angular parameters 
in the virtual-bond chain structure (see ref. [12]). 

Note that ai ,  ~i, rli, ~i and N are constant parameters fixed either by the 
defined geometry or by the given virtual-bond structures, while ()~1)i, (2z)i, ¢i and 
E. are the variables to be computed in the algorithm. 

There are two basic relations, derived by Nishikawa et al. [12] from the 
geometry defined in fig. 1. First, 

T(~_ a) Ti¢ T~ (1) 

where T~ (or T~) is the rotation matrix of angle 0 (where 0 represents any of the 
angles appearing in eq. (1)) with respect to the x-axis (or z-axis) and all angles refer 
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to the same residue i. Second, from the definitions of (~'1)i and (&)i in fig. 1 and 
from fig. 2: 

~/ : ( ~ 2 ) i  + ( ~ 1 ) i +  1 + /g, (2) 

which links the variable (X2)i of  one residue to the variable (X~)i + 1 of the next residue. 
Since all the T matrices in eq. (1) are rotational matrices, each of  them or 

any product of  them is an orthogonal matrix. There are three independent components 
in a 3 x 3 orthogonal matrix, which can be specified by, for example, the three 
independent Euler angles. Therefore, once one of the four variables (~1, X2, ¢, V) 
of  a residue is determined, the other three variables can be obtained by solving the 
component equations in eq. (1). Such solutions may not be unique, though, since 
the orthogonality constraint for each angle 0 

sin20 + cos20 = 1, (3) 

i.e. the Pythagorean theorem, is nonlinear. 
It is not necessary to put all variable angles under the constraint of eq. (3). 

In fact, only one angle (0 in backward generation and If in forward generation) is 
constrained by eq. (3) in the PS algorithm so that the sine of the angle is not 
independent of the cosine of the angle. For all other unknown pairs of  angles, the 
sines and the cosines are treated as independent quantities. The PS algorithm uses 
five equations derived from eq. (1) and one equation of the type eq. (3) to solve 
for three variable angles' sines and cosines, based on the values of cos 2 t and sin )t, l 
(where l = 1 or 2) derived from the neighboring residue by eq. (2). 

3. A graphical analysis of the matrix equation and the algorithmic procedures  

Since the choice of  the set of  equations needed to solve the variable angles 
is not unique, it is interesting to ask: Could the search of the full backbone chain 
be improved by choosing a different set of  equations? In order to satisfy this 
problem in a more systematic way, a concept of  "contraction" and a graphic 
representation of  deriving algebraic equations from the matrix equation (1) are 
introduced in the following discussion. 

Because all of  the matrices in eq. (1) are rotation matrices with respect to 
either the x-axis or the z-axis, sandwiching any product of  the matrices with the 
eigenvectors 

/o/ /°l Ux = o r  Uz =- 0 

0 1 
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and their transposes u~ and u~ will eliminate two of  the T matrices together with 
the two associated parameters from the resulting expression. For example, sandwiching 
eq. (1) with u~ t and ux gives 

Utx T ~ _ o u  x = Ux t T~ T~ T(Zlr_ a)T~ Tr~ U x ,  (4) 

in which two variables ;t 1 and ;t 2 no longer appear. This is in fact one of the equations 
used in the PS algorithm. Its left-hand side is 

t X Z X 
u x T;~ Ti  Tr_ ¢) T~.z u x = u tx T~r~_ ¢) u x = - cos 5, (5) 

while the right-hand side is 

h t T Z , ' l - , x  z x z 

where 

= a cos ~ + b sin ~ cos IV- sin ~ sin ~ sin V sin 77, (6) 

a = cos a cos r/ + sin a cos V sin r/, 

b = sin a cos r/ - cos a cos V cos r/. 

(7) 

(8) 

then the operation to derive eq. (4) can be viewed as a "contraction" between 
matrices T~')~ and TX-;h' which in turn can be graphically represented by drawing a 
line connect ing the two matrices: 

I = ;h ~r- a)T~T~.  (lO) 

With this technique, one can easily see which two angular parameters are eliminated 
by a particular contraction, and choose the desired functional relations among the 
four variable parameters (or the corresponding four sines and four cosines). 

For example, the Pur is ima-Scheraga algorithm uses the following contractions: 

1)v) (v) 

T~. (11) 

If eq. (1) is rewritten as: 

X Z X Z X Z X Z I = T_~zzT~(~_ ¢)T_~; h T~ T; T(~_ ~)TwT~, (9) 
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Fig. 3. The linkage map for the forward (a) and the backward (b) 
generations of the complete polypeptide backbone chain in the 
Purisima-Scheraga algorithm, where 0), (II), (III), (IV) and (V) 
are defined in eq. (11), (F) is eq. (2), and S = sine and C = cosine. 

Here,  the contract ions  (I), (II), (III), (IV) and (V) cor respond to eqs. (9), (2), (8), 
(1) and (10) in [1]. The  "l inkage map",  i.e. the f low-char t  o f  the i terative procedures  
o f  generat ing success ive  backbone  dihedral  angles is shown in fig. 3. 
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4. An alternative algorithm: the /%algorithm 

One particular contraction, the one between T~ and T~,, produces an equation: 

(A ) • S ~ S o ( C ~ C ~ l  Cj~ 2 -~ S,~I Sz2) . - ] -  C o S ~ S ( C ) .  1 

+ C~S,TS~Cz2 + Ca - C i C ,  7 C(  = 0 (12) 

(where S o - sin 0 and C o - cos 0) that attracts special attention since it only involves 
two variables, Al and ~2. It is clear from eq. (2) that &l and L 2 are the only variables 
bridging across neighboring residues, while ¢ and V only relate to each other and 
to ~i and L 2 within the same residue via eq. (1). It is the A,'s that link the global 
structure of the polypeptide chain together in this geometric set-up. 

This makes it possible to construct an algorithm, involving only  variables )t, 1 
and A, 2, which iterates from one residue to the next and generates a "A-~chain" along 

--~ C~. 1 

--~ S~q S ~2 

(v) 

i+l ~ i 

[ C ) q ~  

..... 

S~q "~- 

(A) 
V C ~2 -'q---- 

~--- S ~ 2 

~)  

i ~i-1 

Fig. 4. The linkage maps for the forward (the upper diagram) and the 
backward (the lower diagram) generations of the ~.-chain, where (A) is 
eq. (12) and (F) is eq. (2); C~ = cos 2/-, and Sa~ = sin 2/., where i = 1, 2. 

the given virtual-bond chain. The "linkage map" of such an algorithm is drawn in 
fig. 4. Note that since only eq. (12) relates Aq to ~ ,  the orthogonality constraint 
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sin2~2 + cos2X2 = 1 (13) 

is also needed to determine sin ;t~ and cos ~ from sin A l and cos A 1 (or vice versa) 
of the same residue in the forward (or backward) generation. By substituting 
eq. (13) into eq. (12), sin A 2 can be eliminated and an equation quadratic in cos '%2 
is obtained. For a given set of constant parameters (tx, ~, r/, ( )  and A 1, there may 
be two, one or no solutions for cos A 2. Similar "branching" or "extinguishing" of 
solutions also happens in the PS algorithm, but there the branching point is chosen 
at conver~ing cos 4~ (or cos V) to sin ¢ (or sin V) in the backward (or forward) genera- 
tion [1 ]. 

To build up a real polypeptide backbone chain specified by the set of parameters 
{ G V} from the A-chain constructed by the above algorithm (fig. 4), other equations 
are needed. The following set of contractions seem to provide the simplest  set of  
equations: 

I =  T__X,~2 T_Zor_ ~) T2X).l T~ Tg T(Zlr_ a)T~ Try, (14) 

where (A) is eq. (12). Two of the equations from this set of  contractions are shown 
as follows: 

(B) :  Sc~S~Cv+S(S~Czl  + C ~ C a - C ~ C (  = O, (15) 

(C) : SaS(S¢Sz~ - (S~Cc, - C~CoSa)S¢Cz~ 

+ C~(C~ c,~ + S~ C~S,~) - C, 7 = o. (16) 

The other two equations (D) and (E) can be obtained from the above two by the 
following substitutions: 

+-~ r/, (17) 

This set of  substitutions follow from the transformational properties of eq. (1) under 
transposition and the inversion of the signs of  all angular parameters in the transposed 
matrix equation. 
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i'l-1 ~ i 

Fig. 5. The linkage map for the forward generation of the complete, 
polypeptide backbone chain in the ;t-algorithm, where (A), (B), (C), (D) 
and (E) are defined in eq. (14), (F) is eq. (2), and S = sine and C = cosine. 

S v S~ 

(c)~ 1 ~ ( m  

C).1 

Fig. 6. The linkage map for the backward generation of the complete 
polypeptide backbone chain in the ;t-algorithm, where (A), (B), (C), (D) 
and (E) are defined in eq. (14), (F) is eq. (2), and S = sine and C = cosine. 

The linkage maps of the complete algorithm for converting a virtual-bond 
chain to a polypeptide backbone chain based on the choice of the equations in (14) 
are shown in figs. 5 and 6 for the forward and the backward generations, respectively. 
Note that the sines and cosines of ~ and ge of a residue are uniquely determined by 
the four linear equations (eqs. (15) and (16) and their two conjugate equations) from 
the ~,1 and 2 2 of the same residue. Since this algorithm is characterized by its 
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capability to generate the X-chain {(X1), (Lz)} independently, and then to generate 
the real polypeptide backbone chain { ¢, o/} from the X-chain separately, it is called 
the "X-algorithm". 

5. Discussion and summary 

Based on the systematic analysis of the geometry for generating the full 
backbone of a polypeptide chain from a virtual chain of C a coordinates, a new algorithm 
different from that of Purisima and Scheraga has been obtained. Actually, there 
exist many other different choices of the sets of equations relating the same set of 
geometric parameters in fig. 1, which may form the basis for different algorithms. 
However, it can be seen from the linkage-map construction that the X-algorithm proposed 
here is the one involving the fewest steps in each iteration loop used to generate 
the necessary information for the next residue, i.e. the X 2 in the forward generation 
and the X t in the backward generation. 

There are a number of similarities and differences between the X-algorithm 
and the PS algorithm. Both algorithms are based on the same set-up of geometric 
parameters defined in figs. 1 and 2. The general analysis and the X-algorithm proposed 
here are not aimed at problems beyond those which the Purisima-Scheraga algorithm* 
can deal with. 

Both PS and the X-algorithm use the same number of equations (five) derived 
from the fundamental geometric relations (1) and (2) and the same number (one) 
of orthogonality constraints. Therefore, the computation efficiency in generating all 
variables (¢, V, X1 and ~ )  within an iteration loop for one residue is about the same 
for the two algorithms. The differences between them become more apparent only 
at the level beyond one iteration loop. 

In constructing the full polypeptide backbone by the virtual-bond chain method, 
there are two intrinsically different kinds of constraints working together to eliminate 
most of the solution branches. One is the "local" geometric and energetic constraint 
within the steric contacting range of one or a few neighboring residues, usually 
specified by some semi-empirical rules, e.g. the Ramachandran criterion; the other 
is the "global" geometric constraint, provided by the virtual-bond structure (through 
the set of virtual-bond chain parameters { ~', y}), beyond the steric contacting range. 
The effects of the two types of constraints may be investigated separately by first 
neglecting the local constraint and trying to find all the branching paths of the 
solutions consistent with the given global structure of the virtual-bond chain, and 
then studying how these branching paths of the solutions can survive against the 
local constraints. The first part of the task, i.e. to search all the branching paths 
consistent with the global constraint, can be facilitated by the X-algorithm since it 

*For example, in practice, one may only be able to generate fragments of backbone from a protein 
virtual chain using this type of algorithm, because the regions between the fragments have conformations 
too different from those of the standard geometry to allow such algorithms to pass through. 
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involves only parameters (~q)i and (A,2) i. After all the "X-chains" consistent with the 
given virtual-bond chain are found, the real polypeptide backbone chain (i.e. the 
Cartesian coordinates {x, y, z}) can be generated, each from a "A-chain", and their 
consistency with the local constraints can then be checked. 

The A-algorithm may also improve the accuracy of  the computation due to 
the fact that the calculations of  ~i and ~ are outside the iteration loop which consists 
of  (AI) i and (~ ) i  only; therefore, the errors produced in computing ~i and ~ of  one 
residue will not propagate into the next iteration step for the computation of  the 
neighboring (i.e. the ( i -  l)th or the (i + 1)th) residue. 
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